Methoden zum Einsatz von Künstlicher Intelligenz in der Produktion

Präsenzveranstaltung

Die Veranstaltung wird als Online-Seminar oder als Präsenzveranstaltung angeboten. Bitte beachten Sie dazu die Termine (Erläuterung unten).

Hier finden Sie die Anmeldung zum Präsenztermin.

 

Produktionsprozesse zeichnen sich durch eine hohe Komplexität bedingt durch eine Vielzahl an Stell- und Störgrößen aus. Kombiniert wird dies mit einer durch die voranschreitende Digitalisierung immer größer werdenden Datenbasis. Letztere gilt es zu nutzen, um die neunen Herausforderungen zu meistern.

Wenn es darum geht, große Datenmengen zu bewältigen, bieten sich Methoden aus dem Spektrum der Künstlichen Intelligenz an. Im Rahmen des Workshops werden Strategien vorgestellt, wie durch maschinelle Lernverfahren die Prozessanalyse und -optimierung unterstützt werden kann. Dabei gilt es, diese neue Technologie ganzheitlich zu betrachten und für den Einsatz im realen Produktionsumfeld auszulegen.

Ein am Institut für Produktionstechnik und Umformmaschinen entwickeltes Prozessmodell, das Knowledge Discovery in Time Series for Engineering Application (KDT-EA), setzt genau an dieser Stelle an und dient als methodische Basis. Unter Zuhilfenahme von Use-Cases werden die Potenziale maschineller Lernverfahren aufgezeigt und Herausforderungen beim Transfer in die eigene Produktion diskutiert.

 

Dozenten

M. Sc. Christian Kubik

M. Sc. Marco Becker

Lernziele

  • Potenziale von maschinellen Lernverfahren für produzierende Unternehmen erkennen
  • Handling von großen Datenmengen als Grundlage einer erfolgreichen Umsetzung maschineller Lernverfahren und Integration maschineller Lernverfahren in einem ganzheitlichen Überwachungsansatz verstehen
  • Praktische Herausforderungen bei der Umsetzung eines ganzheitlichen Überwachungsansatzes auf Basis maschineller Lernverfahren sammeln

Zielgruppe

Konstrukteure, Werkzeugbauer, Produktionsleiter, Vorarbeiter, die sich mit Planung, Einrichtung oder dem Betrieb von Produktionsprozessen (sowohl Einzelteilfertigung von Produkten als auch die Fertigung in Klein- und Großserien) beschäftigen. Außerdem Daten-Analysten / Data Scientists, die sich mit der Nutzung von Daten im produktionstechnischen Umfeld beschäftigen.

Vorkenntnisse

Grundlegendes Verständnis für Produktionsthemen

Infos zur Anmeldung

Das Seminar ist sowohl als Online-Veranstaltung als auch in Präsenz geplant. Bitte beachten Sie das jeweilige Format bei Ihrer Anmeldung:

4 Onlineveranstaltungen am 16.11.2021, 03.02.2022 und 04.04.2022:

Die Online-Termine finden über Zoom statt. Ein Link zur Teilnahme wird vor der Veranstaltung per E-Mail an alle Teilnehmer versendet.

3 Präsenzveranstaltungen am 03.03.2022, 02.06.2022  und 22.09.2022:

L1|07 Prozesslernfabrik CiP

Jovanka-Bontschits-Straße 10

Seminarraum 206

Verfügbare Termine
  • Dienstag 16 November 2021
  • Donnerstag 3 März 2022
Präsenz-Veranstaltung
  • Donnerstag 2 Juni 2022
  • Donnerstag 22 September 2022
Termindetails
Dienstag, 16. November 2021
09:00 Uhr - 15:00 Uhr
Anmeldung

Veranstaltungsort

Technische Universität Darmstadt
Prozesslernfabrik CiP (Gebäude L1/07)

Jovanka-Bontschits-Str. 10
64287 Darmstadt

Zustimmung benötigt

Dieses Modul benötigt Ihre Zustimmung zur Verwendung von Google Diensten (Maps) auf dieser Seite.

Onlineveranstaltung

Die Online-Termine finden über Zoom oder Microsoft-Teams statt.

Kurz vor der Veranstaltung erhalten Sie von uns den Link mit den Zugangsdaten per E-Mail.

Verfügbare Termine
  • Dienstag 16 November 2021
  • Donnerstag 3 März 2022
Präsenz-Veranstaltung
  • Donnerstag 2 Juni 2022
  • Donnerstag 22 September 2022

Wir sind für Sie da

Christian Kubik
Christian Kubik
Bitte aktivieren Sie JavaScript
Marco Becker
Marco Becker
Bitte aktivieren Sie JavaScript

Cookies & Features

Um unsere Webseite zu optimieren fortlaufend verbessern zu können, verwenden wir eine lokale Statistiksoftware und einige 3rd Party Features (extern eingebundene Komponenten). Indem Sie die entsprechenden Optionen auswählen, stimmen Sie diesen Features zu. Details zu den verwendeten Technologien und Anbietern können Sie in unserer Datenschutzerklärung entnehmen.

Essenzielle Cookies

Ohne sie läuft nichts.

Statistiken

Anonym und auf Servern in Deutschland: Gibt uns Feedback und Ihnen bessere Inhalte.

Google Dienste

Unsere Videos und Karten sind über Youtube und Google Maps eingebunden.

loading